Example 9. Comparing ProteoMinerTM Method with Limited Digestion Method

[0096] The efficiencies of native digestion and ProteoMinerTM methods for HCP enrichments were tested and compared using mAb5 containing HCP impurities. As shown in FIG. 7, a total of 63 HCPs were identified with high confidence using the ProteoMinerTM method of the present application. A total of 25 HCPs were identified with high confidence using the native digestion method. As shown in FIG. 8, in comparing the ProteoMinerTM and native digestion methods, 21 HCPs were identified by both methods. In comparing the ProteoMinerTM and native digestion methods, 26 HCPs were identified by both methods. Table 14 shows the 63 HCPs which were found in mAb5 sample using ProteoMinerTM method of the present application.

TABLE 14

Accession No.	Protein Name
G3I6T1	Putative phospholipase B-like 2
G3HXN7	Beta-hexosaminidase
G3HLX3	Alpha-N-acetylglucosaminidase
Q9JKY1	Peroxiredoxin-1
G3I4W7	Cathepsin D
G3H892	Aminoacylase-1A
G3I255	L-lactate dehydrogenase
G3GZB2	Acid ceramidase
G3H533	Peptidyl-prolyl cis-trans isomerase
G3IBF4	Serine protease HTRA1
G3I3N5	V-type proton ATPase subunit C
G3I2K6	Hippocalcin-like protein 1
G3GR64	Inter-alpha-trypsin inhibitor heavy chain H5
G3GRS9	N-acetylgalactosamine-6-sulfatase
G3IBH0	Metalloproteinase inhibitor 1
G3I3Y6	Glutathione S-transferase P
G3I1V3	Fibronectin
A0A061IFE2	Liver carboxylesterase 1-like protein
G3GUR1	Complement C1r-A subcomponent
G3GXZ0	Protein-glutamine gamma-glutamyltransferase 2
G3I8R9	
G3HGW6	78 kDa glucose-regulated protein
	Laminin subunit alpha-5
G3I7U9	Serine protease HTRA2, mitochondrial
G3GVH3	Uncharacterized protein C17orf39
A0A061IQB8	Ubiquitin-60S ribosomal protein L40-like isoform 2
G3IAQ0	Alpha-enolase
G3IFA9	Transcription elongation factor B polypeptide 2
G3II12	Calcium-binding protein 39
G3I3K5	G-protein coupled receptor 56
G3I5N6	Insulin-like growth factor-binding protein 4
G3HXL1	Poly(RC)-binding protein 1
G3HH30	Aldose reductase
Q9EPP7	Cathepsin Z
Q9WV24	Beta-2-microglobulin
A0A061HWZ7	Exosome complex component RRP46-like protein
A0A061II04	Protein S100
G3HI03	U4/U6 small nuclear ribonucleoprotein Prp4
A0A061IB69	Fructose-bisphosphate aldolase
G3I5L3	Annexin
A0A061IDC7	Sp110 nuclear body protein
G3H935	TyrosinetRNA ligase
A0A061I0W7	Brain-specific serine protease 4-like protein
G3IEU2	Protein DJ-1
P22629	Streptavidin
A0A061IMN7	Anionic trypsin-2-like protein
A0A061IK25	Protein-L-isoaspartate
A0A061INB9	C-X-C motif chemokine
A0A061I4J0	Prefoldin subunit 2-like protein
G3IG05	Annexin
	Perilipin-4-like protein
AUAU0111 Y4	1 cmpm-4-nkc protein
A0A061I1Y4 A0A061IEQ5	Sphingomyelin phosphodiesterase

TABLE 14-continued

HCPs found in mAb5 sample.	
Accession No.	Protein Name
A0A061I523	Procollagen C-endopeptidase enhancer 1
G3HIM4	Cell division control protein 42-like
G3H2A5	Vacuolar protein sorting-associated protein 29
G3GV64	Mammalian ependymin-related protein 1
G3HPZ5	Macrophage-capping protein
G3HD94	Desmoplakin
G3HAN8	Adenosylhomocysteinase
A0A061I2S4	Putative out at first protein like protein (Fragment)
A0A061HXN7	Gelsolin
G3HN65	Ras suppressor protein 1
G3HH39	Elongation factor 1-alpha 1
G3IKC3 *	Glutathione S-transferase Mu 6
G3GVW2 *	Putative hydrolase RBBP9
G3GTT2 *	C-C motif chemokine
G3I4E8 *	Fatty acid-binding protein, adipocyte

What is claimed is:

1. A method of identifying host cell protein (HCP) impurities in a sample, comprising:

contacting the sample to solid support,

wherein said sample includes at least one high-abundance peptide or protein,

wherein interacting peptide ligands have been attached to said solid support, and

wherein said HCP impurities can bind to the interacting peptide ligands;

washing said solid support using a solution comprising a surfactant providing an eluent;

subjecting said eluent with an enzymatic digestion condition to generate components of isolated HCP impurities; and

identifying components of the isolated HCP impurities using a mass spectrometer.

- 2. The method of claim 1, wherein the surfactant is a phase transfer surfactant, an ionic surfactant, an anionic surfactant, a cationic surfactant, or combinations thereof.
- 3. The method of claim 1, wherein the surfactant is sodium deoxycholate, sodium lauryl sulfate, or sodium dodecylbenzene sulphonate.
- **4**. The method of claim **1**, wherein a concentration of the at least one high-abundance peptide or protein is about at least 1000 times, 10,000 times, 100,000 times or 1,000,000 times higher than a concentration of the each HCP impurity.
- **5**. The method of claim **1**, wherein the interacting peptide ligands are a library of combinatorial hexapeptide ligands.
- **6**. The method of claim **1**, wherein the HCP impurities are quantified using the mass spectrometer, wherein a detection limit of the each HCP impurity is about 0.05-0.1 ppm.
- 7. The method of claim 1, wherein the at least one high-abundance peptide or protein is an antibody, a bispecific antibody, an antibody fragment, a Fab region of an antibody, an antibody-drug conjugate, a fusion protein, a protein pharmaceutical product, or a drug.
- 8. The method of claim 1, wherein an enzyme of the enzymatic digestion reaction is trypsin.
- 9. The method of claim 1, wherein the mass spectrometer is an electrospray ionization mass spectrometer, nano-electrospray ionization mass spectrometer, or a triple quadrupole mass spectrometer, wherein the mass spectrometer is coupled to a liquid chromatography system.
- 10. The method of claim 1, wherein the mass spectrometer is capable of performing LC-MS (liquid chromatography-